Externalised locking compression plate as an alternative to the unilateral external fixator: a biomechanical comparative study of axial and torsional stiffness

نویسندگان

  • B. F. H. Ang
  • J. Y. Chen
  • A. K. S. Yew
  • S. K. Chua
  • S. M. Chou
  • S. L. Chia
  • J. S. B. Koh
  • T. S. Howe
چکیده

OBJECTIVES External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF). METHODS A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness. RESULTS The mean axial stiffness was very similar for UEF (528 N/mm) and ESS-LCP (525 N/mm), while it was slightly lower for ET-LCP (469 N/mm). One-way analysis of variance (ANOVA) testing in all three groups demonstrated no significant difference (F(2,12) = 2.057, p = 0.171).There was a significant difference in mean torsional stiffness between the UEF (0.512 Nm/degree), the ESS-LCP (0.686 Nm/degree) and the ET-LCP (0.639 Nm/degree), as determined by one-way ANOVA (F(2,12) = 6.204, p = 0.014). A Tukey post hoc test revealed that the torsional stiffness of the ESS-LCP was statistically higher than that of the UEF by 0.174 Nm/degree (p = 0.013). No catastrophic failures were observed. CONCLUSION Using the LCP as an external fixator may provide a viable and attractive alternative to the traditional UEF as its lower profile makes it more acceptable to patients, while not compromising on axial and torsional stiffness.Cite this article: B. F. H. Ang, J. Y. Chen, A. K. S. Yew, S. K. Chua, S. M. Chou, S. L. Chia, J. S. B. Koh, T. S. Howe. Externalised locking compression plate as an alternative to the unilateral external fixator: a biomechanical comparative study of axial and torsional stiffness. Bone Joint Res 2017;6:216-223. DOI: 10.1302/2046-3758.64.2000470.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stiffness of the locking compression plate as an external fixator for treating distal tibial fractures: a biomechanics study

BACKGROUND Locking compress plate, as external fixator, is an attractive technique for distal tibial fracture treatment. But it still remains unclear whether the external LCP has sufficient stiffness. Thus, the present study aims to make a comprehensive evaluation of the stiffness of external locking compress plate when it is used as an external fixator in distal tibial fractures treatment. M...

متن کامل

Unstable proximal extraarticular tibia fractures: a biomechanical evaluation of four methods of fixation.

OBJECTIVE To compare the biomechanical stability of extraarticular proximal tibia fractures reconstructed using a double-plate construct, locking plate system, hybrid external fixator, and single lateral periarticular plate, all from the same manufacturer. DESIGN Standardized proximal tibial fractures (AO classification 41-A3.2 and A3.3) in synthetic tibiae were stabilized using one of the fo...

متن کامل

A Biomechanical Comparison between Taylor’s Spatial Frame and Ilizarov External Fixator

ABSTRACT Taylor's spatial frame (TSF) and Ilizarov external fixators (IEF) are two circular external fixator commonly used to address complex deformity and fractures. There is currently no data available comparing the biomechanical properties of these two external fixators. This study looks into the mechanical characteristics of each system. TSF rings with 6 oblique struts, 4 tube connectors, 4...

متن کامل

Evaluation of a novel, nonspanning external fixator for treatment of unstable extra-articular fractures of the distal radius: biomechanical comparison with a volar locking plate.

PURPOSE To compare the stability of a novel, nonspanning external fixator with a standard volar locked plate for treatment of unstable distal radius fractures. METHODS A simulated, unstable, extra- articular distal radius fracture was created in six matched pairs of fresh frozen human distal radii. One of each pair was treated with a nonspanning external fixator [Mirza Cross Pin Fixator (CPX)...

متن کامل

Biomechanical Comparison of Bicortical, Unicortical, and Unicortical Far-Cortex-Abutting Screw Fixations in Plated Comminuted Midshaft Clavicle Fractures.

PURPOSE The objective of this study was to assess the biomechanical properties of bicortical locking screws, unicortical locking screws, and unicortical far-cortex-abutting locking screw fixation in a cadaver model of comminuted midshaft clavicle fractures stabilized with a locking plate placed on the superior surface of the clavicle. METHODS Nine pairs of adult fresh-frozen cadaver clavicles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017